lightStreamer

Adapter Remoting Infrastructure

General Overview

Target: Lightstreamer Server v. 7.4 or greater
Last updated: 8/3/2023



lightStreamer

Table of contents

1 THE A RCHITECTURE 41 tutasesenensasenensnsessnenssssssssensssssssssssssssesensssssssssssssssessnssssesssssssnensnsnses 3

2 DEPLOYMENT OF THE PROXY A DAPTERS. et tueseneusssenessnsesensnsssenensnssesssasassssenssssesssnsnssssenensnesnses 7



lightStreamer

1  The Architecture

The Lightstreamer Adapter Remoting Infrastructure (ARI) provides an easy way to develop Remote
Adapters for Lightstreamer Server. “Remote” means that an Adapter does not run within the same
process as the Java Virtual Machine running the Lightstreamer Server, but within a different process.
Such process can be either local (on the same box) or actually remote (on a different box).

So, the advantages of a Remote Adapter with respect to a standard in-process Java Adapter are the

following:

- Complete physical decoupling between the code of the Server and the code of the Adapter, avoid-
ing possible interferences (memory usage, thread management, etc.).

- Possibility of deploying the Adapter on a different box and, if necessary, behind a second firewall.
Thanks to the support for TLS communication and password-based authentication, the Adapter-
server communication could even occur across the outer Internet.

- Possibility of implementing the Adapter in any language, rather than Java. For instance, the pro-
vided SDKs for .NET Standard Adapter development, for Node.js adapter development, and for
Python Adapter development are actually based on the ARI.

But there is also a drawback. Every interaction between Lightstreamer Server and a Remote Adapter
requires information to be exchanged over TCP packets, rather than communicating in-process, result-
ing in potentially poorer performance. For this reason, some highly intensive callbacks of the Metadata
Adapter interface are not supported by the ARI (for example, isSelected()).

Proxy Adapters

The communication between Lightstreamer Server and a Remote Adapter is based on unidirectional
channels:

- requests channel (data flow from Lightstreamer Server to the Remote Adapter)

- replies channel (data flow from the Remote Adapter to Lightstreamer Server)

The figure below shows the general architecture of the ARI:

Proxy Data Requests/Replies Remote
Lightstreamer Adapter Data Adapter
Kernel '
Proxy Metadata R ts/Repli Remote
Adapter # S e Metadata Adapter

ARI Protocol

In fact, Lightstreamer Adapter interface mainly consists of method invocations by the Kernel to the
Adapters, with related return results or (in the case of the Data Adapter) further update messages.

NOTE: For the sake of clarity, there are also a few cases available of requests originating from the
Adapter targeted to the Server. This regards, in particular, the Metadata Adapter interface. In these
cases, the requests will flow on the replies channel and the related replies will flow on the requests



lightStreamer

channel. In practice, the names of the channels are, conventionally, based on the most common pat-
tern of communication.

The protocol used for the communication between the Proxy Adapters and their Remote Adapter
counterparts (called ARI protocol) is fully documented as part of the SDK for Generic Adapters.

The Proxy Data Adapter and the Proxy Metadata Adapter are ready-made Adapters, written in Java
and provided as part of the Lightstreamer Server. In practice, they expose the Data Provider and
Metadata Provider interfaces over TCP/IP sockets through the ARI protocol.

More precisely, each Proxy Adapter exposes one server socket on which it accepts one connection
from the Remote Adapter. This connection will transport the data flows of the two channels.

In practice, from a TCP/IP perspective, the Remote Adapters are always clients, that is, they open
TCP connections to Lightstreamer Server.

Also with respect to encryption and authentication, when leveraged, the Remote Adapters act as
clients: they receive and validate the TLS certificate from the Proxy Adapters and provide their creden-
tials, to be checked by the Proxy Adapters. Moreover, the Proxy Adapter can be configured to request
and validate a TLS certificate issued by the Remote Adapter.

Old two-connections case

The Proxy Data Adapter also supports two-connections communication. This was the only available
case in Server versions earlier than 7.4, hence it is still needed to ensure backward compatibility with
old Remote Data Adapters and old Remote Adapter SDKs. Note that the most recent Remote Adapter
SDK versions may even no longer support the two-connections behavior.

In this architecture, the replies channel is split into a pure-replies channel and a notifications chan-
nel and the Proxy Data Adapter exposes two server sockets, on which it accepts one connection each
from the Remote Data Adapter. Then, the first socket is used to transport the data flow of the re-
quests channel and the pure-replies channel, whereas the second socket is used unidirectionally, to
transport the data flow of the notifications channel (from the Remote Data Adapter to the Proxy Data
Adapter).

The protocol details are also documented as part of the SDK for Generic Adapters.

The figure below recalls this old architecture:

Requests/Pure-Replies
Proxy Data L Remote
Lightstreamer Adapter Notifications Data Adapter
Kernel
Proxy Metadata R ts/Repli Remote
Adapter SquesoTepe Metadata Adapter

ARI Protocol

Remote Servers

There is always a one-to-one relationship between a Proxy Adapter instance and a Remote Adapter
instance.

When Lightstreamer Server is launched, with a configured Proxy Adapter, the latter listens on its
server socket(s) waiting for Remote Adapters to connect. After a Remote Adapter has connected and,



lightStreamer

if required, successfully authenticated, its connection will be kept open forever. Multiple concurrent
connection attempts on the same server socket are supported, but, as soon as the first one succeeds,
the other ones will be truncated.

On the other hand, there is no requirement that each Remote Adapter should live in a separate
process.

A process running one or multiple Remote Adapter instances is called Remote Server. The Remote
Server executable is a custom component. It can leverage one of the available Remote Adapter SDKs,
like the SDK for .NET Standard Adapter development, or only obey the ARI Protocol specifications
documented as part of the SDK for Generic Adapters.

If multiple Remote Adapters are needed, how to host them by Remote Servers can be decided freely.

NOTE: Lightstreamer Server performs Adapters initialization in parallel. Hence, if you have set up a
Remote Server which manages several Remote Adapters, their connections to the related Proxy
Adapters can be performed in sequence and no specific order is required.

Just consider that, after the connection to a Proxy Adapter has succeeded, there is no formal guaran-
tee that the connection to the next Proxy Adapter will succeed immediately; a short time gap may oc-
cur on Lightstreamer Server between the opening of the server sockets for different Proxy Adapters.

Connection inversion

As said, from a TCP/IP perspective, the Remote Adapters are always clients, that is, they open TCP
connections to Lightstreamer Server. Actually, it is also possible to configure a Proxy Adapter to be-
have as a TCP client and to open a connection to a listening port on a supplied Remote Server url.
Obviously, with this configuration, the Remote Server is required to open a server socket. This is ex-
emplified by the figure below:

Proxy Data Requests/Replies Remote
Lightstreamer Adapter Data Adapter
Kernel ]
Proxy Metadata R ts/Repli Remote
Adapter equests/Replies Metadata Adapter
ARI Protocol

Note that the Data Adapter’s two-connection behavior is not supported in this case.

This option is provided only for convenience, but it is not the preferred one for security reasons. In fact,
assuming that the Remote Server stays on the back-end and Lightstreamer Server, which accepts
client connections, stays in a DMZ, it is more secure, from a firewall perspective, to allow outgoing
connections from the back-end rather than incoming ones.

The main advantage of having the Proxy Adapters as TCP clients is that the Remote Servers don’t
need to know the addresses of the LS Server instances. This is particularly handy when there is a dy-
namic cluster of LS Servers, which has to be matched by an equivalent cluster of Remote Adapters.

In this case, when a new LS Server instance is created, the Proxy Adapter will just request the con-
nection to a Load Balancer, which will take care of spawning a new Remote Server instance and con-
necting to it.

Moreover, the Remote Servers can be made able to accept multiple connections, by spawning a new
Remote Adapter for each connection request. In this way, the LS Server instances and Remote Server
instances can be completely decoupled: when a new LS Server instance is created and the Proxy
Adapter requests the connection to the Load Balancer, the latter can redirect the connection to one of
the available Remote Servers.



lightStreamer

As for authentication, it is still the Remote Adapter that sends its credentials to be checked by the
Proxy Adapter. Moreover, with TLS, the Proxy Adapter also authenticates the Remote Server’'s TLS
certificate. To have the Remote Server authenticate the Proxy Adapter, the latter can be configured to
send its own TLS certificate, which allows the Remote Server to perform the check.

Obviously, leveraging this options adds complexity to the Remote Server, which has to implement a
server socket (and, in case of TLS connection, provide a TLS certificate).

Also note that the option is not compatible with all the available Remote Adapter SDKs. In particular, it
is not compatible with the use of the current version of the SDK for Python Adapter development, as
the connections are handled by the SDK library.

Robust Proxies

There exist two flavors of Proxy Data Adapter: NetworkedDataProvider and RobustNetworkedDat-
aProvider. Likewise, there exist two flavors of Proxy Metadata Adapter: NetworkedMetadat-
aProvider and RobustNetworkedMetadataProvider.

Closing the connection could provoke the automatic shutdown of Lightstreamer Server, depending on
the type of Proxy Adapter involved. The NetworkedDataProvider and NetworkedMetadataProvider
shut the Server down, if disconnected from the remote counterpart, in order to keep client and server
state consistency (they cannot take any recovery action, so the best action is to have the client recon-
nect to another server instance in the cluster). On the other hand, the RobustNetworkedDat-
aProvider and RobustNetworkedMetadataProvider contain some recovery capabilities and avoid to
terminate the Lightstreamer Server process. Full details on the recovery behavior are available as in-
line comments within the example “adapters.xml” file available in the “Lightstreamer/docs/
remote_adapter_robust_conf_template” folder.

Connections unresponsive but not closed can be detected and treated as closed by the Proxy Adapter
through a configurable timeout on the activity of the sockets. The mechanism is only meaningful if the
Remote Servers are configured to send suitable keepalive packets at regular intervals.



lightStreamer

2 Deployment of the Proxy Adapters

All the Proxy Adapters of the Adapter Remoting Infrastructure (i.e. Data and Metadata, in the normal
and “Robust” version) are pre-deployed inside the Lightstreamer Server. The only necessary action to
enable instances of the available adapters is to point them, using their symbolic names, in the
“adapters.xml’ file(s).

In order to deploy an Adapter Set which includes both a Proxy Metadata Adapter and a Proxy Data
Adapter, the following steps should be followed:

1) Create a directory within “Lightstreamer/adapters”. It can be whatever name (for example,
“proxy”).
2) Depending on the chosen Proxy Adapter type:

» If deploying Proxy Adapters with “Robust” Proxy Data and Metadata Adapters, copy
the “adapters.xml” file located under “Lightstreamer/docs/remote_adapter_ro-
bust_conf_template” to the “proxy” directory.

* If deploying normal Proxy Adapters, copy the “adapters.xml” file located under
“Lightstreamer/docs/remote_adapter_conf_template” to the “proxy” directory.

3) Edit the copied “adapters.xml’ file to configure the Proxy Adapters. See the file for inline com-
ments.

The provided “adapters.xml” files are templates showing a typical configuration, where both the
Adapters (Data and Metadata) are either normal or “Robust” ones. Heterogeneous configurations are
possible too. For example:

- A Proxy Data Adapter together with a provided Java Metadata Adapter (such as the LiteralBased-
Provider).

- A Proxy Data Adapter together with a custom Java Metadata Adapter.

- A custom Java Data Adapter together with a Proxy Metadata Adapter.

- A Proxy Data Adapter based on “Robust” type together with a Proxy Metadata Adapter of normal
type.

- Etc... Any other combination is possible.

If the defined Adapter Set includes multiple Data Adapters, each of them can be either a Proxy Data
Adapter or a custom Java Data Adapter.

In all these cases, just extract the relevant <metadata_provider> or <data_provider> blocks from the
“adapters.xml’ template files and add them in your own adapters.xml.



	1 The Architecture
	2 Deployment of the Proxy Adapters

